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Lecture 1: Notation and Functions 1-6

1.4.1 Vertical Line Test for Graph

A way to visualize a function is its graph. If f is a real-valued function of one variable,
its graph consists of the points in the Cartesian plane R2 whose coordinates are the input-
output pairs for f . In set notation, the graph is

{(x, y) 2 R2 : x 2 R, y = f(x)}.

Review: Graphing a real-valued function of one variable: [HBSP] 1.2.

Example 1.4.4. linear functions; piecewise linear functions; quadractic functions, expo-
nential and log functions, trig functions.
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Lecture 1: Notation and Functions 1-7

It is important to realize that not every curve is the graph of a function. For instance,
suppose the circle x2 + y2 = 5 were the graph of some function y = f(x). Then, since the
points (1, 2) and (1,�2) both lie on the circle, we would have f(1) = 2 and f(1) = �2,
contrary to the requirement that a function assigns one and only one value to each number
in its domain. Geometrically, this happens because the vertical line x = 1 intersects the
graph of the circle more than once. The vertical line test is a geometric rule for determining
whether a curve is the graph of a function.

The Vertical Line Test A curve is the graph of a function if and only if no vertical line
intersects the curve more than once:
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Lecture 1: Notation and Functions 1-8

1.4.2 Some Special Functions

Definition 1.4.2. A piecewise function is defined by more than one formula, with each
individual formula defined on a subset of the domain.

Example 1.4.5. Let f : R ! R be defined by

f(x) =

(
1, if x < 0

2x, if x � 0.

Then f(�1) = 1, f(0) = 0 and f(1) = 2.

piecewise linear function
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Lecture 1: Notation and Functions 1-9

Example 1.4.6. Let f : R ! R be defined by

f(x) =

8
>><

>>:

x+ 1, if x > 0,

0, if x = 0,

�1, if x < 0.

Then f is a piecewise function.

Example 1.4.7. The absolute value function

|x| :=
(
x, if x � 0,
�x, if x < 0.
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Lecture 1: Notation and Functions 1-10

Example 1.4.8. Write f(x) = 2x+ |2� x| as a piecewise function.

Solution. Note that |2� x| = 2� x when 2� x � 0, that is x  2; and |2� x| = x� 2 when
2�x < 0, that is, x > 2. Hence f(x) = 2x+2�x = x+2 if x  2, and f(x) = 2x+x� 2 =
3x� 2 if x > 2, or we can write

f(x) =

(
x+ 2 if x  2

3x� 2 if x > 2
.

⌅

Example 1.4.9. Define the floor function as bxc = the largest integer  x. Then f(x) = bxc
is a piecewise function.

Exercise 1.4.1. Define the ceiling function as dxe = the smallest integer � x. Sketch the
graph of dxe.

Exercise 1.4.2. Sketch the graph of

f(x) =

8
>><

>>:

x� 2, if x > 1,

�1, if 0  x  1,

x2, if x < 0.

actually piecewise
linear
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