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Lecture 1: Notation and Functions 1-6

1.4.1 Vertical Line Test for Graph

A way to visualize a function is its graph. If f is a real-valued function of one variable,
its graph consists of the points in the Cartesian plane R? whose coordinates are the input-
output pairs for f. In set notation, the graph is

_{_Cjﬁ> — {(z,y) eR*: 2 € R,y = f(2)}.

Review: Graphing a real-valued function of one variable: [HBSP] 1.2.

Example 1.4.4. linear functions; piecewise linear functions; quadractic functions, expo-
nential and log functions, trig functions.



Lecture 1: Notation and Functions 1-7

It is important to realize that not every curve is the graph of a function. For instance,
suppose the circle 22 + y? = 5 were the graph of some function y = f(z). Then, since the
points (1,2) and (1, —2) both lie on the circle, we would have f(1) = 2 and f(1) = -2,
contrary to the requirement that a function assigns one and only one value to each number
in its domain. Geometrically, this happens because the vertical line x = 1 intersects the
graph of the circle more than once. The vertical line test is a geometric rule for determining
whether a curve is the graph of a function.

The Vertical Line Test A curve is the graph of a function if and only if no vertical line
intersects the curve more than once:
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Lecture 1: Notation and Functions 1-8

1.4.2 Some Special Functions

Definition 1.4.2. A piecewise function is defined by more than one formula, with each
individual formula defined on a subset of the domain.

Example 1.4.5. Let f : R — R be defined by

f(x):{l’ ifz <0

2z, ifxz > 0.

Then f(—1) =1, f(0) =0and f(1) = 2.
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Lecture 1: Notation and Functions

Example 1.4.6. Let f : R — R be defined by

z+1, ifxz>0,

f(z) =<0, ifz=0,
-1, if x <0.
Then f is a piecewise function.
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Example 1.4.7. The absolute value function

x, ifx >0,

{iCx) = lel= {_g;, if 2 < 0.
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Example 1.4.8. Write f(z) = 2z + |2 — x| as a piecewise function.
aINA—~

Solution. Note that |2 —z| =2 —z when 2 —z > 0, thatis x < 2; and |2 — 2| = = — 2 when
2—x <0, thatis,z > 2. Hence f(z) =2z +2 -z =z+2ifx < 2,and f(z) =22z +2x -2 =

3z — 2 if x > 2, or we cgh write
2/‘% Sy 2—X%
{:17—1— ifx <2

3r—2 ifz>2
\_/_2_2')(,9‘7("2

flz) =

Example 1.4.9. Define the floor function a@ the largest integer < x. Then f(z) = |z
. . . . /\N
is a piecewise function.
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Exercise 1.4.1. Define the ceiling function ag [z] = the smallest integer > z. Sketch the
graph of [z].

Exercise 1.4.2. Sketch the graph of

x—2, ifxz>1,

x2, ifx <O0.
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